Loading...
OpenAPI Directory | Cenit Admin

Assess, monitor, manage, and remediate security issues across your AWS infrastructure, applications, and data.

AWS Health

The AWS Health API provides programmatic access to the AWS Health information that is presented in the AWS Personal Health Dashboard. You can get information about events that affect your AWS resources:

In addition, these operations provide information about event types and summary counts of events or affected entities:

The Health API requires a Business or Enterprise support plan from AWS Support. Calling the Health API from an account that does not have a Business or Enterprise support plan causes a SubscriptionRequiredException.

For authentication of requests, AWS Health uses the Signature Version 4 Signing Process.

See the AWS Health User Guide for information about how to use the API.

Service Endpoint

The HTTP endpoint for the AWS Health API is:

  • https://health.us-east-1.amazonaws.com

AWS Identity and Access Management

AWS Identity and Access Management (IAM) is a web service that you can use to manage users and user permissions under your AWS account. This guide provides descriptions of IAM actions that you can call programmatically. For general information about IAM, see AWS Identity and Access Management (IAM). For the user guide for IAM, see Using IAM.

AWS provides SDKs that consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .NET, iOS, Android, etc.). The SDKs provide a convenient way to create programmatic access to IAM and AWS. For example, the SDKs take care of tasks such as cryptographically signing requests (see below), managing errors, and retrying requests automatically. For information about the AWS SDKs, including how to download and install them, see the Tools for Amazon Web Services page.

We recommend that you use the AWS SDKs to make programmatic API calls to IAM. However, you can also use the IAM Query API to make direct calls to the IAM web service. To learn more about the IAM Query API, see Making Query Requests in the Using IAM guide. IAM supports GET and POST requests for all actions. That is, the API does not require you to use GET for some actions and POST for others. However, GET requests are subject to the limitation size of a URL. Therefore, for operations that require larger sizes, use a POST request.

Signing Requests

Requests must be signed using an access key ID and a secret access key. We strongly recommend that you do not use your AWS account access key ID and secret access key for everyday work with IAM. You can use the access key ID and secret access key for an IAM user or you can use the AWS Security Token Service to generate temporary security credentials and use those to sign requests.

To sign requests, we recommend that you use Signature Version 4. If you have an existing application that uses Signature Version 2, you do not have to update it to use Signature Version 4. However, some operations now require Signature Version 4. The documentation for operations that require version 4 indicate this requirement.

Additional Resources

For more information, see the following:

  • AWS Security Credentials. This topic provides general information about the types of credentials used for accessing AWS.

  • IAM Best Practices. This topic presents a list of suggestions for using the IAM service to help secure your AWS resources.

  • Signing AWS API Requests. This set of topics walk you through the process of signing a request using an access key ID and secret access key.

AWS Import/Export Service AWS Import/Export accelerates transferring large amounts of data between the AWS cloud and portable storage devices that you mail to us. AWS Import/Export transfers data directly onto and off of your storage devices using Amazon's high-speed internal network and bypassing the Internet. For large data sets, AWS Import/Export is often faster than Internet transfer and more cost effective than upgrading your connectivity.

Amazon Inspector

Amazon Inspector enables you to analyze the behavior of your AWS resources and to identify potential security issues. For more information, see Amazon Inspector User Guide.

AWS IoT

AWS IoT provides secure, bi-directional communication between Internet-connected things (such as sensors, actuators, embedded devices, or smart appliances) and the AWS cloud. You can discover your custom IoT-Data endpoint to communicate with, configure rules for data processing and integration with other services, organize resources associated with each thing (Thing Registry), configure logging, and create and manage policies and credentials to authenticate things.

For more information about how AWS IoT works, see the Developer Guide.

AWS IoT

AWS IoT-Data enables secure, bi-directional communication between Internet-connected things (such as sensors, actuators, embedded devices, or smart appliances) and the AWS cloud. It implements a broker for applications and things to publish messages over HTTP (Publish) and retrieve, update, and delete thing shadows. A thing shadow is a persistent representation of your things and their state in the AWS cloud.

AWS IoT Jobs is a service that allows you to define a set of jobs — remote operations that are sent to and executed on one or more devices connected to AWS IoT. For example, you can define a job that instructs a set of devices to download and install application or firmware updates, reboot, rotate certificates, or perform remote troubleshooting operations.

To create a job, you make a job document which is a description of the remote operations to be performed, and you specify a list of targets that should perform the operations. The targets can be individual things, thing groups or both.

AWS IoT Jobs sends a message to inform the targets that a job is available. The target starts the execution of the job by downloading the job document, performing the operations it specifies, and reporting its progress to AWS IoT. The Jobs service provides commands to track the progress of a job on a specific target and for all the targets of the job

Amazon Kinesis Streams Service API Reference

Amazon Kinesis Streams is a managed service that scales elastically for real time processing of streaming big data.

AWS Key Management Service

AWS Key Management Service (AWS KMS) is an encryption and key management web service. This guide describes the AWS KMS operations that you can call programmatically. For general information about AWS KMS, see the AWS Key Management Service Developer Guide.

AWS provides SDKs that consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .Net, iOS, Android, etc.). The SDKs provide a convenient way to create programmatic access to AWS KMS and other AWS services. For example, the SDKs take care of tasks such as signing requests (see below), managing errors, and retrying requests automatically. For more information about the AWS SDKs, including how to download and install them, see Tools for Amazon Web Services.

We recommend that you use the AWS SDKs to make programmatic API calls to AWS KMS.

Clients must support TLS (Transport Layer Security) 1.0. We recommend TLS 1.2. Clients must also support cipher suites with Perfect Forward Secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes.

Signing Requests

Requests must be signed by using an access key ID and a secret access key. We strongly recommend that you do not use your AWS account (root) access key ID and secret key for everyday work with AWS KMS. Instead, use the access key ID and secret access key for an IAM user, or you can use the AWS Security Token Service to generate temporary security credentials that you can use to sign requests.

All AWS KMS operations require Signature Version 4.

Logging API Requests

AWS KMS supports AWS CloudTrail, a service that logs AWS API calls and related events for your AWS account and delivers them to an Amazon S3 bucket that you specify. By using the information collected by CloudTrail, you can determine what requests were made to AWS KMS, who made the request, when it was made, and so on. To learn more about CloudTrail, including how to turn it on and find your log files, see the AWS CloudTrail User Guide.

Additional Resources

For more information about credentials and request signing, see the following:

Commonly Used APIs

Of the APIs discussed in this guide, the following will prove the most useful for most applications. You will likely perform actions other than these, such as creating keys and assigning policies, by using the console.

AWS Lambda

Overview

This is the AWS Lambda API Reference. The AWS Lambda Developer Guide provides additional information. For the service overview, see What is AWS Lambda, and for information about how the service works, see AWS Lambda: How it Works in the AWS Lambda Developer Guide.

Amazon Lex Build-Time Actions

Amazon Lex is an AWS service for building conversational voice and text interfaces. Use these actions to create, update, and delete conversational bots for new and existing client applications.

Amazon Lightsail is the easiest way to get started with AWS for developers who just need virtual private servers. Lightsail includes everything you need to launch your project quickly - a virtual machine, SSD-based storage, data transfer, DNS management, and a static IP - for a low, predictable price. You manage those Lightsail servers through the Lightsail console or by using the API or command-line interface (CLI).

For more information about Lightsail concepts and tasks, see the Lightsail Dev Guide.

To use the Lightsail API or the CLI, you will need to use AWS Identity and Access Management (IAM) to generate access keys. For details about how to set this up, see the Lightsail Dev Guide.

You can use Amazon CloudWatch Logs to monitor, store, and access your log files from Amazon EC2 instances, AWS CloudTrail, or other sources. You can then retrieve the associated log data from CloudWatch Logs using the CloudWatch console, CloudWatch Logs commands in the AWS CLI, CloudWatch Logs API, or CloudWatch Logs SDK.

You can use CloudWatch Logs to:

  • Monitor logs from EC2 instances in real-time: You can use CloudWatch Logs to monitor applications and systems using log data. For example, CloudWatch Logs can track the number of errors that occur in your application logs and send you a notification whenever the rate of errors exceeds a threshold that you specify. CloudWatch Logs uses your log data for monitoring; so, no code changes are required. For example, you can monitor application logs for specific literal terms (such as "NullReferenceException") or count the number of occurrences of a literal term at a particular position in log data (such as "404" status codes in an Apache access log). When the term you are searching for is found, CloudWatch Logs reports the data to a CloudWatch metric that you specify.

  • Monitor AWS CloudTrail logged events: You can create alarms in CloudWatch and receive notifications of particular API activity as captured by CloudTrail and use the notification to perform troubleshooting.

  • Archive log data: You can use CloudWatch Logs to store your log data in highly durable storage. You can change the log retention setting so that any log events older than this setting are automatically deleted. The CloudWatch Logs agent makes it easy to quickly send both rotated and non-rotated log data off of a host and into the log service. You can then access the raw log data when you need it.

Definition of the public APIs exposed by Amazon Machine Learning

Provides AWS Marketplace business intelligence data on-demand.

394 api specs